A. Uma Maheswari, C. Meera

Abstract— Right ternary near-rings (RTNR) are generalization of their binary counterpart. The authors in their earlier papers have defined right ternary near-rings, zero-symmetric right ternary near-rings and prime ideals. In this paper N- subgroups, quasi-ideals and bi-ideals of an RTNR are defined and their basic characteristics are studied. It is established that in a zero-symmetric RTNR every quasi-ideal is a bi-ideal and in a regular zero-symmetric RTNR, a bi-ideal is a right ternary subnear-ring. A characterization theorem for left regular zero-symmetric RTNR in terms of completely semi-prime left N-subgroups is given.

Index Terms— Right ternary subnear-ring, zero-symmetric RTNR, right, lateral, left ideals, completely semi-prime ideal.

1 INTRODUCTION

THE notion of ternary algebraic system was introduced by Lehmer [3] in 1932. Ternary semigroups [5, 4, 7], ternary semirings [6] are some of the algebraic structures which involve ternary product. To deal with the concept of nearrings using ternary product Warud Nakkhasen and Bundit Pibaljommee [11] have applied the notion of ternary semiring to define left ternary near- rings, ternary subnear-rings and their ideals. The authors [8, 9] have defined in their earlier works right ternary near-rings, zero-symmetric right ternary near-rings and prime ideals.

In 1987, Chelvam and Ganesan [2] introduced and generalized the notion of quasi-ideals of near-rings which was introduced by Yakabe [10] in 1983 to bi-ideals. The regular nearring was introduced by Beidlemann [1]. In 1989, Yakabe characterized regular zero-symmetric near-rings without nonzero nilpotent elements in terms of quasi-ideals.

In this paper N- subgroups, quasi-ideals and bi-ideals of a binary right near-ring is generalized to right ternary near-ring using the concept of ternary semirings. It is established that every N-subgroup (ideal) is a quasi- ideal and every quasiideal is a bi-ideal in a zero-symmetric RTNR. It is also established that in a regular zero-symmetric RTNR, a bi-ideal is a right ternary subnear-ring.

Left regular zero-symmetric RTNR are characterized in terms of completely semi-prime left N-subgroups. A characterisation theorem for a regular , idempotent and distributive zero-symmetric RTNR is also given.

2 PRELIMINARIES

In this section we give the basic definitions that are necessary for the following sections of this paper. **Definition 2.1[5]** Let N be a non-empty set and [] be an operation defined from $N \times N \times N$ to N called a ternary operation. Then (N, []) is a *ternary semigroup* if for every x,y,z,u,v \in N, [[xyz]uv] = [x[yzu]v] = [xy[zuv]] = [xyzuv].

Definition 2.2[5] Let A, B and C be non-empty subsets of a ternary semigroup N. Then $[ABC] = \{[abc] \in N \mid a \in A, b \in B, c \in C\}$.

Definition 2.3[8] Let N be a non-empty set together with a binary operation + and a ternary operation []: $N \times N \times N \rightarrow N$. Then (N, +, []) is a *right ternary near-ring* (a right ternary near ring is written as RTNR) if

(RTNR-1) (N, +) is a group (not necessarily abelian).

(RTNR-2) (N, []) is a ternary semigroup.

(RTNR-3) [(a + b) c d] = [a c d] + [b c d], for every a,b,c,d in N.

Similarly we can define *left ternary near-ring* and *lateral ternary near ring*.

Definition 2.4 [11] A non-empty subset S of a right ternary near-ring is called a right *ternary subnear-ring* (RTSNR) if (i) $x - y \in S$ if $x, y \in S$ (ii) [SSS] $\subseteq S$.

Definition 2.5[11] Let N and N ' be any two right ternary near rings. Then a mapping $h: N \rightarrow N'$ is called a *right ternary near ring homomorphism* if (i) h(x + y) = h(x) + h(y), (ii) h([x y z]) = [h(x) h(y) h(z)],for every $x, y, z \in N$.

Definition 2.6[8] Let N be a right ternary near-ring. Let J be a normal subgroup (N, +). Then J is called (i) a *right ideal* of N if $[J N N] \subseteq J$ (ii) a *left ideal* if $[t t' (t'' + i)] - [t t' t''] \in J$ (iii) a *lateral ideal* if $[t (t' + i) t''] - [t t' t''] \in J$ where t, t', t'' $\in N$, $i \in J$. J is an *ideal* of N if it is a right, lateral and left ideal of N.

Definition 2.7 [9] If N is an RTNR then

 $(N_0)_R = \{n \in N \mid [0 n n'] = 0, \forall n' \in N\},$ $(N_0)_M = \{n \in N \mid [n 0 n'] = 0, \forall n' \in N\},$ $(N_0)_L = \{n \in N \mid [n n' 0] = 0, \forall n' \in N\} are called$ *right*zero-symmetric part, lateral zero-symmetric part and left zero-

symmetric part of N respectively and

A. Uma Maheswari Department of Mathematics, Quaid-E-Millath Government College for Women (Autonomous), Chennai – 600 002, Tamil Nadu, India, E-mail: umashiva2000@yahoo.com

C. Meera, Department of Mathematics, Bharathi Women's College (Autonomous), Chennai – 600 108, Tamil Nadu, India, E-mail: eya65@rediffmail.com

 $N_0 = \{n \in N \mid [n \ 0 \ 0] = 0\}$ is the *zero-symmetric part* of N. If $N = N_0$ then N is called a zero-symmetric RTNR.

Note 2.8 If N is an RTNR then

(i) $(N_0)_R = N$ and $N_0 \subseteq N$. (ii) $(N_0)_M = N_0$. For if $n \in N_0$ then [n00] = 0 and therefore $[n0n'] = [n \ [000] \ n'] = [n0 \ [00n']] = [n00] = 0$ and hence $N_0 \subseteq (N_0)_M$. Obviously $(N_0)_M \subseteq N_0$. Thus $(N_0)_M = N_0$ (iii) $(N_0)_L \subseteq N_0$.

Definition 2.9 [9] An ideal J of N is a *completely semi-prime ideal* if $x^3 \in J \Rightarrow x \in J$.

3 N-SUBGROUPS

In this section N-subgroups and trio- RTNR which is an RTNR in which each one-sided N-subgroup is an N-subgroup are defined and a trio-RTNR is established as a zero-symmetric RTNR.

Definition 3.1A non-empty subset H of N is called an *N*- *subgroup* of N if (i) H is a subgroup of (R, +) (ii) [NNH] \subseteq H (iii) [NHN] \subseteq H (iv) [HNN] \subseteq H.

If (i) and (ii) hold then H is called a *left* N-subgroup. If (i) and (iii) hold then H is called a *lateral* N-subgroup. If (i) and (iv) hold then H is called a *right* N-subgroup.

Obviously if H is an N-subgroup of N then [HHN] \subseteq H, [NHH] \subseteq H, [HNH] \subseteq H and every N-subgroup is a right ternary subnear-ring.

Example 3. 2 Let N = {0, x, y, z}. Define + as in Table (i) and [] on N by [x y z] = (x.y).z for every x, y, $z \in N$ where. is defined as in Table (ii). Then (N, +, []) is a right ternary near-ring and {0, x} is an N- subgroup of N. {0,y} is only a left N-subgroup as [yxz] = $x \notin \{0,y\}$ and [zyx] = $x \notin \{0,y\}$. Also {0, z} is not a right N-subgroup as [zxz] = $x \notin \{0,z\}$ and not a left or lateral N-subgroups as [xzz] = $x \notin \{0,z\}$.

+	0	x	v	Z		0	x	v	Z
0	0	x	V	Z	0	0	0	0	0
x	x	0	Z	y	x	0	0	0	x
у	у	Z	0	x	у	0	x	у	у
z	Z	у	x	0	Z	0	x	у	Z
		Τ	able	(i)	Ta	ble (i	i)		

Definition 3.3 If N is an RTNR and Q is a subset of N then the subsets N*Q*N and N*N*Q of N are defined as

 $N*Q*N = \{[x y + i z] - [x y z] \in N | x,y,z \in N \text{ and } i \in Q\} \text{ and } N*N*Q = \{[x y z + i] - [x y z] \in N | x,y,z \in N \text{ and } i \in Q\}.$

Proposition 3.4 In a zero-symmetric right ternary near-ring , $[NNQ] \subseteq N^*N^*Q$ and $[NQN] \subseteq N^*Q^*N$.

Proof: Let $x, y \in N$ and $z \in Q$. Then [xyz] = [xyz] + 0 = [x y 0+z] - [x y 0], as N is zero-symmetric and obviously R.H.S is in N*N*Q and hence $[NNQ] \subseteq N*N*Q$. Similarly $[NQN] \subseteq N*Q*N$.

Remark 3.5 In a zero-symmetric right ternary near-ring every right, lateral, left ideal is respectively a right, lateral and left N-subgroup of N.

Proposition 3.6 If N is an RTNR then $(N_0)_L$ is a right N-subgroup of N.

Proof: If $H= (N_0)_L$ then for x, $y \in H$, $[x-y \ge 0] = [x\ge 0] - [y\ge 0] = 0$ and hence $x-y\in H$. Now let $u \in [HNN]$. Then u = [h n n']. Consider $[u \ge 0] = [[h n n'] \ge 0] = [h [n n'r] = 0] = [h n''0] = 0$ as $h \in H$. Thus $u \in H$ and hence $(N_0)_L$ is a right N-subgroup of N.

Remark 3.7 Let N = {0, x, y, z} and + on N be defined as in Table (iii) and [] be defined as [xyz] = (x.y).z where. is defined as in Table (iv).Then (N, +, []) is a right ternary near-ring.

It can be easily seen that $(N_0)_L = \{0\}$, right N-subgroup and is *not* a left or lateral N-subgroup. Also $(N_0)_M$ is *not* an N-subgroup. Since $(N_0)_M = \{0,y\}$ as $[yxz] = x \notin \{0,y\}, [xyz] = x \notin \{0,y\}$ and $[xzy] = x \notin \{0,y\}$

+	0	x	у	Z		•	0	x	у	z
0	0	x	у	Z		0	0	0	0	0
x	x	0	Z	у		x	x	x	x	x
у	у	Z	0	x		у	0	x	у	Z
z	Z	у	x	0		Z	x	0	Z	у
	Table (iii)						ble (i	v)		

Definition 3.8 An RTNR N is called a *trio- RTNR* if every onesided N-subgroup is an N-subgroup of N.

If a left (resp.lateral,right) N-subgroup is an N-subgroup then N is called a *left* (resp.*lateral,right*) *trio-RTNR*.

Example 3.9 Let N ={0,x,y,z} and let + on N be defined as in Table (v) and [] on N by $[x \ y \ z] = (x.y).z$ for every x, y, $z \in N$ where . is defined as in Table (vi). Then (N, +, []) is a trio-RTNR.

+	0	x	у	z		•	0	x	у	Z
0	0	x	у	Z		0	0	0	0	0
x	х	0	Z	у		x	0	x	0	0
у	у	Z	0	x		у	0	0	у	0
Z	Z	у	x	0		Z	0	0	0	Z
	Table (v)					Ta	ble (v	ri)		

In Example 3.2, N is *not* a trio-RTNR as {0,y} is only a left N-subgroup but is *not* an N-subgroup of N.

Lemma 3.10 Every trio- RTNR is a zero-symmetric RTNR. Proof: Let N be a trio- RTNR. Since {0} is a right N-subgroup and N is a trio-RTNR, {0} is a left and lateral N-subgroup and hence [xy0] = 0 and [x0y] = 0, for every x, y \in N. Hence by Note 2.8, N is a zero-symmetric RTNR.

Remark 3.11 The converse of the above lemma in general is not true. For , in Example 3.2, N is a zero-symmetric RTNR but {0, y} is a left N-subgroup and is not a right, lateral N-subgroup of N.

IJSER © 2013 http://www.ijser.org **Definition 3.12** If N is an RTNR then the set of all *distributive elements* of N is defined as $N_d = \{x \in N \mid [xy (n+n')] = [xyn] + [xyn']$ and [x (n+n') y] = [xny] + [x n'y] for all n, n', $y \in N$. If N = N_d then N is called a *distributive* RTNR.

Example 3.13 (i)Let $N = \{0, x, y, z\}$ and + on N be defined as in Table(vii) and [] be defined as [xyz] = (x.y).z where . is defined as in Table (viii).Then (N, +, []) is a distributive right ternary near-ring.

+	0	х	у	Z		0	х	у	Z
0	0	x	у	Z	0	0	0	0	0
x	x	0	Z	у	x	0	x	0	x
у	у	Z	0	x	у	0	0	0	0
Z	z	у	x	0	Z	0	х	0	x
Table (vii)					Ta	ble (v	riii)		

(ii) Let N ={0,x,y,z} and + on N be defined as in Table (ix) and [] on N by [x y z] = (x.y).z for every x, y, $z \in N$ where . is defined as in Table (x). Then (N, +, []) is *not* a distributive right ternary near-ring as [xx(x+y)] = [xxz] = 0 and [xxx] + [xxy] = x + 0 = x.

+	0	x	у	Z		•	0	x	у	Z	
0	0	x	у	Z		0	0	0	0	0	
x	x	0	Z	у		x	0	x	0	0	
у	у	Z	0	x		у	0	0	y	0	
Z	Z	у	x	0		Z	0	0	0	Z	
	Table (ix)					Тέ	able (:	x)			-

Definition 3.14 An element $x \in N$ is called an *idempotent element* if [xxx] = x.

If all the elements in N are idempotents then N is called an *idempotent RTNR*.

Example 3.15 In Example 3.13(ii) N is an idempotent RTNR but N in Example 3.13 (i) is *not* an idempotent RTNR as [yyy] \neq y.

Theorem 3.16 Let N be an RTNR.Then

(i) If $x,y \in N$, then [Nxy] is a left N-subgroup. In particular [Nxx] is a left N-subgroup of N.

(ii) If $x \in N$ is distributive then [xyN] is a right N-subgroup of N. In particular, [xxN] is a right N-subgroup of N.

Proof: (i) Let $x, y \in N$ and $[Nxy] = H.Let u, v \in H$. Then $u - v = [nxy] - [n'xy] = [(n-n') xy] \in H$. Now If $z \in [NNH]$ then $z = [n n' h] = [n n' [n''x y]] = [[n n' n''] xy] \in H$ as $[n n' n''] \in N$. It is obvious that [Nxx] in particular is a left N-subgroup of N.

(ii) Let $x \in N$ and [xyN] = H.Let $u, v \in H$.Then $u - v = [xyn] - [xy n'] = [xy(n-n')] \in H$, as x is distributive. Now if $y \in [HNN]$ then $z = [hnn'] = [[xy n''] n n'] = [xy [n'' n n']] \in H$ as $[n'' n n'] \in N$.Thus [xyN] is a right N-subgroup of N.

It is obvious that [xxN] in particular is a right N-subgroup of N.

4 QUASI-IDEAL

In this section quasi-ideals are defined and in a zerosymmetric RTNR, N-subgroups and ideals are established as quasi-ideals. It is also established that an additive subgroup of N is a quasi-ideal if it is the intersection of right, lateral and left N-subgroups as well as ideals in a zero-symmetric RTNR.

Definition 4.1 A subset Q of an RTNR N is called a *quasi-ideal* of *N* if the following conditions hold:

(i)(Q, +) is a subgroup of (N, +).

(ii) $[QNN] \cap ([NQN] + [N [NQN]N]) \cap [NNQ] \cap ((N*Q*N) + (N*(N*Q*N)*N) \cap (N*N*Q) ⊆ Q.$

Example 4.2 Let N be as in Example 3.7.Then {0, x} is a quasi ideal.

In a zero-symmetric RTNR quasi-ideals are defined as follows.

Definition 4.3 An additive subgroup Q of a zero-symmetric RTNR N is called a *quasi-ideal* of N if $[QNN] \cap ([NQN] + [N[NQN]N]) \cap [NNQ] \subseteq Q$.

Example 4.4 Let N be as in Example 3.2.Then {0, x} and {0, y} are quasi-ideals of N.

Proposition 4.5 Every quasi-ideal of a zero-symmetric RTNR N is an RTSNR of N.

Proof: As Q is a quasi-ideal of N, $[QNN] \cap ([NQN] + [N[NQN]N]) \cap [NNQ] \subseteq Q$. Now $[QQQ] \subseteq [QNN]$, $[QQQ] = [QQQ] + \{0\} \subseteq [NQN] + [N[NQN]N]$ and $[QQQ] \subseteq [NNQ]$. Hence $[QQQ] \subseteq [QNN] \cap ([NQN] + [N[NQN]N]) \cap [NNQ] \subseteq Q$. Thus Q is an RTSNR of N.

Remark 4.6 The converse of the above proposition is in general not true. For in Example 3.2, $Q=\{0,z\}$ is an RTSNR but is *not* a quasi-ideal of N as $[QNN]\cap([NQN] + [N[NQN]N]) \cap [NNQ]$ is $N \neq Q$.

Lemma 4.7 Let N be a zero-symmetric RTNR.Then

(i) Every right (resp.lateral, left) N-subgroup of N is a quasiideal of N.

(ii) Every right (resp.lateral, left) ideal of N is a quasi-ideal of N.

Proof: (i) Let Q be a right N-subgroup of N. Then Q is an additive subgroup of N and $[QNN] \subseteq Q$. Now $[QNN] \cap ([NQN] + [N[NQN]N]) \cap [NNQ] \subseteq [QNN] \subseteq Q$. Thus Q is a quasi-ideal of N. Similarly if Q is a lateral or a left N-subgroup of N then Q is a quasi-ideal of N.

(ii) In a zero-symmetric right ternary near-ring every right, lateral, left ideal is respectively a right, lateral and left N-subgroup of N and hence by (i), every right (resp.lateral, left) ideal of N is a quasi-ideal of N.

Remark 4.8 In general the converse of the above lemma is not true. For in Example 3.2, N is a zero-symmetric RTNR and {0, y} is a quasi-ideal of N but is not a right and lateral N-subgroups (ideals) of N.

Lemma 4.9 Let N be a zero-symmetric RTNR.Then if Q is a quasi-ideal of N and T is an RTSNR of N then $Q \cap T$ is a quasi-

IJSER © 2013 http://www.ijser.org

ideal of T.

Proof: As Q ∩ T is a subgroup of (N, +) and Q ∩T ⊆ T, Q∩T is a subgroup of (T, +). Also, [(Q∩T) TT]∩([T(Q∩T)T]+[T[T(Q∩T)T]T]) ∩ [TT(Q∩T)]) ⊆ [QTT]∩([TQT]+[T[TQT]T]) ∩[TTQ] ⊆[QNN] ∩([NQN] + [N[NQN]N])∩[NNQ] ⊆Q. Again

Again $[(Q \cap T) TT] \cap ([T (Q \cap T) T] + [T[T(Q \cap T)T]T]) \cap [TT(Q \cap T)]$ $\subseteq [TTT] \cap ([TTT] + [T [TTT] T]) \cap [TTT] \subseteq T. Therefore$ $[Q \cap T)TT] \cap ([T(Q \cap T)T]+[TT[(Q \cap T)T]T]) \cap [TT(Q \cap T)] \subseteq Q \cap T$. Thus Q ∩ T is a quasi-ideal of T.

Lemma 4.10 Let N be a zero-symmetric RTNR.Then the intersection of two quasi-ideals of N is a quasi-ideal of N.

Proof: Let Q_1 and Q_2 be quasi-ideals of N.Then they are additive subgroups of N and hence $Q_1 \cap Q_2$ is an additive subgroup of N. Now,

 $[(Q_1 \cap Q_2) NN] \cap ([N (Q_1 \cap Q_2) N] + [N[N(Q_1 \cap Q_2)N]N])$ $\cap [NN (Q_1 \cap Q_2)]$

 $\subseteq [Q_1NN] \cap ([NQ_1N]+[N[NQ_1N]N]) \cap [NNQ_1] \subseteq Q_1.$

Again[$(Q_1 \cap Q_2)NN$] \cap ([$N(Q_1 \cap Q_2)N$]+[$N[N(Q_1 \cap Q_2)N]N$]) \cap [$NN(Q_1 \cap Q_2)$]

 $\subseteq [Q_2 NN] \cap ([NQ_2 N] + [N[NQ_2 N]N]) \cap [NNQ_2] \subseteq Q_2.$

Therefore $[(Q_1 \cap Q_2)NN] \cap ([N(Q_1 \cap Q_2)N] +$

 $[N[N(Q_1 \cap Q_2)N]N]) \cap [NN(Q_1 \cap Q_2)] \subseteq Q_1 \cap Q_2$. Thus $Q_1 \cap Q_2$ is a quasi-ideal of N.

Corollary 4.11The intersection of arbitrary collection of quasiideals of a zero-symmetric RTNR N is a quasi-ideal of N.

Lemma 4.12 Let N be a zero-symmetric RTNR.Then

(i) An additive subgroup of N is a quasi –ideal if it is the intersection of right, lateral and left N-subgroups of N.

(ii) An additive subgroup of N is a quasi –ideal if it is the intersection of right, lateral and left ideals of N.

Proof: (i) Let Q be an additive subgroup of N. Let J, M and L be right, lateral and left N-subgroups of N respectively. Then by Lemma 4.7(i), J, M and L are quasi-ideals of N. Let $Q = J \cap M \cap L$. Then Q is the intersection quasi-ideals and hence by Corollary 4.11, Q is a quasi-ideal of N.

(ii) In a zero-symmetric right ternary near-ring every right, lateral and left ideal is respectively a right ,lateral and left N-subgroup of N and hence by (i), an additive subgroup of N is a quasi –ideal if it is the intersection of right,lateral and left ideal of N.

Proposition 4.14 If x is an idempotent element of an RTNR then $[xxNxx] = [xxN] \cap [Nxx]$.

Proof: If x is an idempotent element of an RTNR then [xxx] = x. Now if $u \in [xxNxx]$ then $u = [xxnxx] = [xx [nxx]] \in [xxN]$.

Also $u = [xxnxx] = [[xxn] xx] \in [Nxx]$.Hence $u \in [xxN] \cap [Nxx]$.

Suppose $v \in [xxN] \cap [Nxx]$. Then $v = [xxn_1]$ and $v = [n_2xx]$. Consider $[xxvxx] = [xx[xxn_1]xx] = [[xxx] [xn_1x]x] = [[xxn_1]xx] = [vxx]=[[n_2xx]xx] = [n_2[xxx]x] = [n_2xx] = v$. Hence $v \in [xxNxx]$. Thus $[xxNxx] = [xxN] \cap [Nxx]$.

Theorem 4.15 I Let N be a zero-symmetric RTNR.Then

(i) [Nxx] is a quasi-ideal of N.

(ii) If x is a distributive element of N then [xxN] is a quasiideal of N.

(iii) If x is an idempotent and distributive element of an RTNR then [xxNxx] is a quasi-ideal of N.

Proof: (i) By Theorem 3.16(i), [Nxx] is a left N-subgroup of N . Since every left N-subgroup is a quasi-ideal, [Nxx] is a quasi-ideal of N.

(ii) By Theorem 3.16(ii), [xxN] is a right N-subgroup of N. Since every right N-subgroup is a quasi-ideal, [xxN] is a quasi-ideal of N.

(iii) By Proposition 4.14, $[xxNxx] = [xxN] \cap [Nxx]$ and therefore by (i) and (ii) and Lemma 4.10, [xxNxx] is a quasi-ideal of N.

5 **BI-IDEALS**

In this section bi-ideals of an RTNR N are defined and some of their basic algebraic properties are studied. It is established that an idempotent bi-ideal of a bi-ideal of a zerosymmetric RTNR N is a bi-ideal of N.

Definition 5.1 An additive subgroup J of N is called a *bi-ideal* of N if $[J [NJN] J] \cap J^*(N^*J^*N)^*J \subseteq J$.

Example 5.2 Let N be as in Example 4.2 then {0,x} is a bi-ideal of N.

In a zero-symmetric RTNR bi-ideals are defined as follows.

Definition 5.3 An additive subgroup J of N is called a *bi-ideal* of N if $[J[NJN]] \subseteq J$.

Example 5.4 Let N be as in Example 3.2 .Then $\{0,x\}$ is a bi-ideal of N.But L= $\{0,z\}$ is not a bi-ideal as [LNLNL] is N and is not a subset of L.

Lemma 5.5 Let N be a zero-symmetric RTNR.Then every quasi-ideal of N is a bi-ideal of N.

Proof: Let L be a quasi-ideal of N.Then L is a subgroup of N.Now [L [NLN] L] \subseteq [L[NNN]L] \subseteq [LNL] \subseteq [LNN] \rightarrow (1).

Also $[L[NLN]L] = \{0\} + [L[NLN]L] \subseteq [NLN] + [N[NLN]N]$ and $[L[NLN]L] \subseteq [L[NNN]L] \subseteq [LNL] \subseteq [NNL]$.

Thus[L[NNN]L]⊆[LNN]∩([NLN] +[N[NLN]N]) ∩ [NNL] ⊆ L, as L is a quasi-ideal of N.Hence L is a bi-ideal of N.

Lemma 5.6 Let N be a zero-symmetric RTNR.Then (i) Every right (resp. lateral, left) N-subgroup of N is a bi-ideal of N.

(ii) Every right (resp. lateral, left) ideal of N is a bi-ideal of N Proof: (i) In a zero-symmetric right ternary near-ring by Lemma 4.7(i) every right, lateral and left N-subgroup of N is a quasi-ideal of N. Hence by Lemma 5.5, every right (resp. lateral, left) N-subgroup of N is a bi-ideal of N.

(ii) In a zero-symmetric right ternary near-ring every right, lateral, left ideal is respectively a right, lateral and left N-subgroup of N. By Lemma 4.7(ii), every right (resp.lateral, left) ideal of N is a quasi-ideal of N. Hence by Lemma 5.5, every

right (resp.lateral, left) ideal of N is a bi-ideal of N.

Proposition 5.7 If L is a bi-ideal of a zero –symmetric RTNR N and S is an RTSNR of N then $L \cap S$ is a bi-ideal of S.

Proof: Since L is a bi-ideal and S is an RTSNR L and S are additive subgroups of N and hence an additive subgroup of S also. Now $[(L\cap S) S (L\cap S) S(L\cap S)] \subseteq [LSLSL] \subseteq [LNLNL]$, as L is a bi-ideal of N.

Also[(L \cap S) S (L \cap S)S(L \cap S)] \subseteq [S[SSS]S] \subseteq [SSS],as S is an RTSNR of N.

Thus $[(L \cap S) S (L \cap S) S (L \cap S)] \subseteq L \cap S$. Hence $L \cap S$ is a bi-ideal of S.

Theorem 5.8 Let N be a zero-symmetric RTNR.Then an idempotent bi-ideal of a bi-ideal of N is a bi-ideal of N.

Proof: Let J be an idempotent bi-ideal of a bi-ideal L of N. Then $[JJJ] = J \rightarrow (1)$, $[J[LJL]J] ⊆ J\rightarrow (2)$ and $[L[NLN]L] ⊆ L \rightarrow (3)$. Now [J[NJN]N] = [[JJJ] [NJN] [JJJ]] = [J[J[J [NJN]J]J]J] ⊆[J[J[L [NLN]L]J]J] ⊆ [J[[LJL]J]J] = [J[JLJ][JJJ]] ⊆ [J[J[LJL]J]J]⊆ [JJJ] = J. Hence J is a bi-ideal of N.

Proposition 5.9 Let N be a zero-symmetric RTNR. If K is an RTSNR of N and J, M, L are right, lateral, left N-subgroups of N such that $[JML] \subseteq K \subseteq J \cap M \cap L$ then K is a bi-ideal of N. Proof: Let J,M,L are right, lateral, left N-subgroups of N respectively, such that

 $[JML] \subseteq K \subseteq J \cap M \cap L.Now, [K[NKN]K] \subseteq [(J \cap M \cap L)N(J \cap M \cap L)] \subseteq [J[NML]L] \subseteq [JML] \subseteq K.$ Hence K is a bi-ideal of N.

Theorem 5.10 Let N be a zero-symmetric RTNR. Then (i) If $x, y \in N$ and J is a bi-ideal then [Jxy] is a bi-ideal of N (ii) If x is a distributive element of N then [xyJ] is a bi-ideal of N. In particular, [Jxx] and [xxJ] are bi-ideals of N. Proof: (i) Let J be a bi-ideal of N .Then [JNJNJ] \subseteq J. If u, v \in [Jxy]

then u = [sxy] and v= [txy]. Now u-v =[sxy]-[txy] = [s-t x y] \in [Jxy].Also [[Jxy]N[Jxy]N[Jxy]] = [J[xyN]J[xyN]Jxy] \subseteq [[JNJNJ]xy] \subseteq [Jxy].Thus [Jxy] a bi-ideal of N.

(ii) Let x be a distributive element of N. If $u, v \in [xyJ]$ then u = [xys] and v = [xyt].Now $u \cdot v = [xys] - [xyt] = [xy(s-t)] \in [xyJ]$ as x is a distributive element.

Also [[xy]]N[xy]] N[xy]]

 $\subseteq [xy][Nxy]J[Nxy]J] \subseteq [xy[JNJNJ]] \subseteq [xyJ].$

Thus [xy]] a bi-ideal of N.

It is obvious that [Jxx] and [xxJ] are in particular bi-ideals of N.

Corollary 5.11 Let N be a zero-symmetric RTNR. If $x, y \in N$, if x is a distributive element of N and J is a bi-ideal of N then [x[y]x]y] is a bi-ideal of N. In particular, [xxJxx] is a bi-ideal of N.

Proof: Let J be a bi-ideal of N .Then $[JNJNJ] \subseteq J$. If u,

 $v \in [x[y]x]y]$ then u = [x[ymx]y] and v = [x[ynx]y].

Now u - v = [x[ymx]y] - [x[ynx]y] = [x([ymx] - [ynx])y] =

 $[x[y(m-n)x]y] \in [x[y]x]y] . Now[[x[y]x]y]N[x[y]x]y]N[x[y]x]y]$

 $\subseteq [[xy]][x[yNx]y]][x[yNx]y][[xy]] \subseteq [[xy]][N]N][[xy]]$

 $\subseteq [x[y[J[NJN]]x]y] \subseteq [x[yJx]y]$. Thus [x[yJx]y] is a bi-ideal of N. It is obvious that [xxJxx] in particular is a bi-ideal of N.

6 REGULAR RTNR

In this section a regular RTNR is defined and its properties are studied. It is established that in a regular zero-symmetric RTNR, a bi-ideal is a right ternary subnear-ring. Moreover left regular zero – symmetric RTNR are characterized in terms of completely semi-prime left N-subgroups.A characterization theorem for a regular, idempotent and distributive RTNR is also given. Every intra-regular RTNR is proved as a lateral trio-RTNR.

Throughout this section N is taken as a zero-symmetric RTNR.

Definition 6.1 An RTNR is *regular* if for every $x \in N$ there exists $u \in N$ such that x = [xux].

Note 6.2 A regular element $x \in N$ may equivalently be defined as x = [xuxvx], for some $u, v \in N$

Example 6.3 (i) Let N be as in example 3.13(ii).Then (N, +, []) is a regular right ternary near-ring.

(ii) Let N be as in example 3.13(i). Then (N, +, []) is *not* a regular right ternary near-ring for, $y \in N$ cannot be written as [y0y] or [yxy] or [yyy] or [yzy].

Note 6.4 If N is regular then it is obvious that [NNN] = N.

Lemma 6.5: Let N be a regular RTNR. Then

(i)Every lateral N- subgroup L of N is a regular RTSNR of N.(ii) Every lateral ideal of N is a regular RTSNR of N.

Proof: (i) Let L be a lateral N-subgroup of N then $[NLN] \subseteq L$. If $x \in L$ then $x \in N$ and hence by Definition 6.1, there exists $u \in N$ such that x = [xux]. Now $x = [xux] = [[xux]ux] = [x [uxu] x] \Rightarrow x = [xvx]$ where $v = [uxu] \in L$. Since x = [xvx] where $v \in L$ it follows that [LLL] = L and hence L is a regular RTSNR. (ii) In a zero-symmetric RTNR N, every lateral ideal of N is a

lateral N-subgroup of N and hence by (i) the proof follows.

Lemma 6.6 If L is an N-subgroup of a regular RTNR N then [LLL] = L

Proof: Since L is an N-subgroup [LLL] \subseteq L.Now let x \in L.Since N is regular x= [xux], for some u \in N.Since L is a lateral N-subgroup and x = [[xux] ux] = [x [uxu] x] \in [LLL].Thus L \subseteq [LLL].Hence [LLL] = L.

Theorem 6.7 The homomorphic image of a regular RTNR is a regular RTNR.

Proof: Let φ : N \rightarrow M be an onto RTNR homomorphism. Let N be a regular RTNR. Suppose $y \in M$. Since φ is onto there exists $x \in N$ such that $\varphi(x) = y \Rightarrow \varphi([xux]) = y \Rightarrow [\varphi(x) \varphi(u) \varphi(x)] = y \Rightarrow [y \varphi(u)y] = y$. Since $\varphi(u) \in M$ this implies that M is a regular RTNR.

Theorem 6.8 If N is a regular RTNR and J, M, L are right,

lateral and left N-subgroup of N respectively then [JML] = $J \cap M \cap L$.

Proof: Since $[JML] \subseteq [JNN] \subseteq J$, $[JML] \subseteq [NMN] \subseteq M$, $[JML] \subseteq [NNL] \subseteq L$ it follows that $[JML] \subseteq J \cap M \cap L$.

Now let $x \in J \cap M \cap L$. Since N is regular for some $u \in N$, x = [xux]. Consider x = [xux] = [xu[xux]] = [xu[[xux]ux]] = [x[uxu][xux]]

= $[[xux][uxu][xux]] \in [JML]$ as J,M,L are right ,lateral and left N-subgroup of N respectively .This implies that $J \cap M \cap L \subseteq [JML]$.Hence $[JML] = J \cap M \cap L$.

Corollary 6.9 If N is a regular RTNR and J, L are right and left N-subgroups of N respectively then $[JNL] = J \cap L$.

Proof: As J is a right N-subgroup $[JNL] \subseteq [JNN] \subseteq J$ and $[JNL] \subseteq [NNL] \subseteq L$ as L is a left N-subgroup of N. Hence $[JNL] \subseteq J \cap L$. Now let x ∈ J∩L. Then as N is regular x = [xux] for some u∈N. Now x= $[xux] = [[xux] u x] \in [JNL]$. This implies that J∩L⊆ [JNL]. Hence $[JNL] = J \cap L$.

Remark 6.10 In a zero-symmetric regular RTNR Theorem6.8 and Corollary 6.9 hold good for ideals also.

Theorem 6.11 In regular RTNR an additive subgroup L of N is a bi-ideal iff L = [LNL].

Proof: Let L be an additive subgroup of an RTNR and [LNL] =L. Then [L [NLN] L] = [LN [LNL]] = [LNL] = L. Hence L is a bi-ideal of N.

Conversely let $[L [NLN] L] \subseteq L.Since N is regular, L \subseteq [LNL].$ Now $[LNL] \subseteq [[LNL] NL] = [L [NLN] L] \subseteq L.Hence L = [LNL].$

Theorem 6.12 In a regular RTNR every bi-ideal is an RTSNR. Proof: If L is a bi-ideal of N then L is an additive subgroup of N and as N is regular L = [LNL]. Now [LLL] \subseteq [LNL] = L and hence L is an RTSNR.

Definition 6.13 An element $x \in N$ is called a *right (resp.left) regular* if there exists $u \in N$ such that [xxu] = x (resp. [uxx] = x). If all the elements of N are right (resp.left) regular then N is called a *right (resp.left) regular RTNR*.

Note 6.14 A right (resp. left) regular element may equivalently be defined as x = [[xxx] uv] (resp. x= [uv [xxx]]), for some u, $v \in N$.

Example 6.15 In Example 3.2, 0 and y are both right and left regular elements of N but N is neither a left regular nor a right regular RTNR as $x \neq [0xx]$ or [xxx] or [yxx] or [zxx] and also $x\neq[xx0]$ or [xxx] or [xxy] or [xxz].

The following theorem characterizes a left regular zerosymmetric RTNR in terms of a completely semi-prime left Nsubgroup of N.

Theorem 6.16 A zero-symmetric RTNR is left regular if and only if every left N-subgroup of N is a completely semi-prime. Proof : Let N be a left regular zero-symmetric RTNR and L be any left N-subgroup of N .Let for $x \in N$, $x^3 = [xxx] \in L$. Since N is left regular there exists $u \in N$ such that x = [uxx].Now $x = [u [uxx] x] = [u u [xxx]] \in [NNL] \subseteq L$, as L is a left N-subgroup of N .Thus L is a completely semi-prime ideal of N.

Conversely let every left N-subgroup of N be completely semiprime.Since for any x \in N by Proposition 3.16, [Nxx] is a left Nsubgroup it follows that [Nxx] is completely semi-prime. Now x³ = [xxx] \in [Nxx].Since [Nxx] is completely semi-prime x \in [Nxx] and hence x = [uxx], for some u \in N. Since x is arbitrary it follows that N is left regular. **Remark 6.17 (i)** If N is a distributive right regular zerosymmetric RTNR then it can be characterized in terms of right N-subgroups.

(ii) If N is an idempotent, distributive RTNR then [Nxx] and [xxN] are written as <x>1 and <x>r respectively.

The following is a characterization theorem for regular, idempotent and distributive RTNR.

Theorem 6.18 If N is an idempotent, distributive RTNR then the following statements are equivalent:

(i) N is regular.

(ii) $R \cap L = [RNL]$ for every right N-subgroup R and every left N-subgroup L of N.

(iii) $\langle x \rangle_r \cap \langle y \rangle_1 = [\langle x \rangle_r N \langle y \rangle_1]$ for every $x, y \in N$.

(iv) $\langle x \rangle_r \cap \langle x \rangle_l = [\langle x \rangle_r N \langle x \rangle_l]$ for every $x \in N$.

Proof: (i) \Rightarrow (ii) : By Corollary 6.8, if N is a regular RTNR and R, L are right and left N-subgroups of N respectively then [RNL] = R \cap L.

(ii) \Rightarrow (iii): As $\langle x \rangle_r$ and $\langle y \rangle_1$ are left N-subgroup and right N-subgroups of N respectively, $\langle x \rangle_r \cap \langle y \rangle_1 = [\langle x \rangle_r N \langle y \rangle_1]$ for every $x,y \in N$ follows by (ii).

(iii) \Rightarrow (iv): By taking y as x in (iii), $\langle x \rangle_r \cap \langle x \rangle_l = [\langle x \rangle_r N \langle x \rangle_l]$ for every $x \in N$.

(iv) \Rightarrow (i) : Suppose (iv) holds. Since $x \in \langle x \rangle_r \cap \langle x \rangle_l = [\langle x \rangle_r N \langle x \rangle_1]$ and $[\langle x \rangle_r N \langle x \rangle_1] = [[xxN]N[Nxx]] = [xx[NNN]xx] \subseteq [x[xNx]x] \subseteq [xNx]$, $x \in [xNx]$ which implies that x = [xux] for some $u \in N$. Hence N is regular.

Theorem 6.19 In a regular RTNR N, the following statements hold.

(i) J = [JNJ] for every bi-ideal J of N,

(ii) Q = [QNQ] for every quasi-ideal Q of N.

Proof: Suppose N is a regular RTNR and let $x \in J$. Then there exists $u \in N$ such that $x = [xux] \Rightarrow x \in [JNJ] \Rightarrow J \subseteq [JNJ]$.

Now let $y \in [JNJ]$ then y = [jnj'] for some $j,j' \in J$.and $n \in N$.

Since N is regular j = [jtj] for some $t \in N$. Thus y = [jnj'] =

[[jtj] n j'] \in [JNJNJ] \subseteq J, which implies [JNJ] \subseteq J.Hence [JNJ] = J (ii) Since every quasi-ideal of an RTNR N is a bi-ideal, by (ii), Q = [QNQ] for every quasi-ideal Q of N.

Definition 6.20. An RTNR N is called *intra- regular* if for each element $x \in N$, there exists elements $u, v \in N$ such that [u [xxx] v] = x.

Example 6.21 (i) Let N be as in Example 3.13(ii).Then (N, +, []) is an intra-regular RTNR.

(ii) Let N be as in Example 3.13(i).Then (N, +, []) is *not* an intra-regular RTNR. For $y \in N$ cannot be written as $[0y^{3}0]$ or $[0y^{3}x]$ or $[0y^{3}y]$ or $[0y^{3}z]$ or $[xy^{3}0]$ or $[xy^{3}x]$ or $[xy^{3}y]$ or $[xy^{3}x]$ or $[yy^{3}0]$ or $[yy^{3}x]$ or $[yy^{3}y]$ or $[yy^{3}z]$ or $[zy^{3}0]$ or $[zy^{3}x]$ or $[zy^{3}y]$ or $[zy^{3}x]$ or $[zy^{3}z]$.

Lemma 6.22 If N is an intra-regular RTNR then for any left N-subgroup L, lateral N-subgroup M and right N-subgroup J of S, $L \cap M \cap J = [LMJ]$.

Proof: Suppose that N is an intra-regular RTNR. Let J, M and L be a right N-subgroup, a lateral N-subgroup and a left N-

subgroup of N respectively.

Since $[JML] \subseteq [JNN] \subseteq J$, $[JML] \subseteq [NMN] \subseteq M$, $[JML] \subseteq [NNL] \subseteq L$, it follws that $[JML] \subseteq J \cap M \cap L$. Now for $x \in J \cap M \cap L$, we have $x = [ux^3v]$, for some $u, v \in N$. This implies that $x = [ux^3v] = [u [ux^3v][ux^3v][ux^3v]v] =$ $[[uux^3] [vux^3vu][x^3vv]] \in [LMJ]$. Thus $J \cap M \cap L \subseteq [LMJ]$.

In the following theorem it is established that every intraregular RTNR is a lateral trio-RTNR.

Theorem 6.23. Let N be an intra-regular RTNR. Then

(i) A non-empty subset M of N is an N-subgroup of N if and only if M is a lateral N-subgroup of N.

(ii) A non-empty subset M of N is an ideal of N if and only if M is a lateral ideal of N.

Proof: (i) It is obvious that if M is an N-subgroup of N then M is a lateral N-subgroup of N.

Conversely, let M be a lateral N-subgroup of an intra- regular RTNR. Let $z \in M$ and $x, y \in N$. Then $z \in N$ and hence there exists elements $u, v \in N$ such that $z = [uz^3v]$.

Now $[xyz] = [xy [uz^3v]] = [[xyu] z^3v] \in [NMN] \subseteq M$.

Also $[zxy] = [[uz^{3}v] xy] = [uz^{3} [vxy]] \in [NMN] \subseteq M.$

Thus M is an N-subgroup of N.

ii) In a zero-symmetric RTNR N, every lateral ideal of N is a lateral N-subgroup of N and hence by (i) the proof follows.

Lemma 6.24 Let N be an intra-regular RTNR. Then

(i) Every lateral N- subgroup L of N is an intra-regular RTSNR of N.

(ii) Every lateral ideal of N is an intra-regular RTSNR of N. Proof: (i) Let L be a lateral N-subgroup of N then

[NLN] ⊆L.Let x∈L.Then x∈N. By Definition 6.20, there exists $u,v \in N$ such that $x = [ux^3v]$.Now $x = [ux^3v] = [u[ux^3v] [ux^3v]$ $[ux^3v]v] = [[uux^3vu]x^3[vux^3vv]] \Rightarrow x = [u'x^3v']$ where $u' = [uux^3vu]$, $v' = [vux^3vv] \in L$.Since $x = [u'x^3v']$, $u',v' \in L$, L is regular which in turn implies that [LLL] = L and hence L is a regular RTSNR.

(ii) In a zero-symmetric RTNR N, every lateral ideal of N is a lateral N-subgroup of N and hence by (i) every lateral ideal of N is an intra-regular RTSNR of N.

7 CONCLUSION

In this paper N-subgroups, quasi-ideals, bi-ideals and regular zero-symmetric right ternary near-rings were defined and their basic algebraic properties were proved. In a zerosymmetric right ternary near-ring, N-subgroups as well as ideals were established as quasi-ideals. Bi-ideals were visualized in the generalized context of quasi-ideals. In this work biideals in a regular right ternary near-ring have been realized as right ternary subnear-rings. For future work a similar approach can be explored for right ternary near-rings which are not zero-symmetric.

REFERENCES

- [1] J.C. Beidleman, "A note on regular near-rings," *Journal of Indian Math. Soc.*, vol. 33, pp. 207–210, 1969.
- [2] T.T. Chelvam and N. Ganesan, "On bi-ideals of near-rings," Indian

Journal of Pure and Applied Mathematics, vol. 18, pp. 1002–1005, 1987.

- [3] D.H. Lehmer, "A ternary analogue of abelian groups," Amer. J. of Math., vol. 54, pp. 329-338, 1932.
- [4] M.L. Santiago, "Some contributions to the study of ternary semigroups and semiheaps," PhD diserrtation, University of Madras, 1983.
- [5] F.M. Sioson, "Ideal theory in ternary semigroup," *Math. Japonica.*, vol. 10, pp. 63-84, 1965.
- [6] Sukhendu Kar, Ternary semiring An Introduction, VDM Verlag Dr. Muller, 2010. ISBN-10: 3639004019, ISBN-13: 978-3639004014.
- [7] Tapan K. Dutta, Sukhendu Kar and Bimal K. Mai, "On Ideals in Regular Ternary semigroups," *Discussiones Mathematicae General Al*gebra and Applications, vol. 28, pp. 147–159, 2008.
- [8] A. Uma Maheswari and C. Meera, "On Fuzzy Soft Right Ternary Near-rings," *International Journal of Computer Applications*, (0975 – 8887) vol. 57, no. 6, Nov. 2012.
- [9] A. Uma Maheswari and C. Meera, "Fuzzy Soft Prime Ideals over a Right Ternary Near-ring", *IJPAM*, accepted for publication.
- [10] I. Yakabe, "Regular near-rings without non-zero nilpotent elements," *Proc. Japan Acad.*, vol. 65A, pp. 176–179, 1989.
- [11] Warud Nakkhasen and Bundit Pibaljommee, "L-fuzzy ternary subnear-rings," *International Mathematical Forum*, vol. 7, no. 41, pp. 2045-2059, 2012.

ER